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Abstract-An analytkal study is conducted to determine the fundamental frequencies and critical
buckling loads for laminated anisotropic circular cylindrical shell panels. including the effects of
transverse shear deformation and rotary inertia. by using the Galerkin technique. A linearized form
of Sander's shell strain~isplilcement relations ilre derived. which include a parabolic distribution
of transverse shear strains. The theory is valid for Iilminate thkkness to radius ratios. hi R. of up to
1/5. Higher order constitutive relations arc derived for the laminate. A set of five coupled partial
dilferential equations of motion .lOd boundary conditions arc derived and then solved using the
modified Galerkin k'Chnique. Simply suppllrted and clamped boundary conditions arc investigated.
Comparisons arc made with the Donnell shell solutions. The clfects of transverse shear deformation
ilOd rotary inertia arc e:'tamined by comparing Ihe results wilh classical solutions. where applicable.
The radius of curvature is varied tIl dctcrmine thc ellccts of membrane and bending coupling. The
theory compares e.""lly wilh the Donnell solulillns. which arc valid up toh! R '" I/50. As e:otpccted.
as Ienglh to Ihickness ralios arc reduced. shear deformalil'n clrcelS significantly lower the natural
frequent:ies and but:kling loads. Analysis also shows that wlary inerlia ell'eels arc very small. Finally.
ilS h, R is varied from l) (l1al plate) to L5 (ma:otimllm hmin. the frcquent:ics and bud ling loads
int:rease due to membrane and bending coupling.

INTRODUCTION

Recuuse of Ihe potentiully lurge sputiul variations of stiffness properties in composite shell
structures due to tailoring. three-dimensional stress und strain effects become very impor­
tunt. Whereas classical two-dimensional assumptions muy be vulid for an identical shell
structure consisting of isotropic materiuls. they may le.td to gross inuccuracies for an
orthotropic construction (Dennis and Palazotto, 1999, 1990).

Past research has clearly indicated the need to refine the classical Kirchhoff-Love shell
theories to better predict the stability and dynamic responses of composite cylindrical shell
configurations. The Kirchholf-Love theory assumes normals to the shell mid-surface before
deformation remain normal after deformation, effectively neglecting transverse shear
strains. These classical theories predict shell panels that are too stiff, resulting in high
frequencies and buckling loads. L. H. Donnell applied the Kirchhoff-Love theory to
cylindrical shell panels. The need to include transverse she.tr elfects was first recognized by
Reissner (1945), followed by Mindlin (1951), who included rotary inertia effects in the
dynamic analysis of plates. The Reissner-Mindlin theory assumes the cross-section remains
plane. but is allowed to rotate from the normal with respect to the mid-surface after
deformation. Additional independent degrees of freedom arc included. which enables the
transverse she.tr to be fully described by the shell mid-surface degrees of freedom and the
thickness coordinate. This first order theory does not satisfy the boundary conditions of
zero transverse shear on the top and bottom surfaces of the laminate because of the constant
she<tr angle assumed. The introduction of u correction factor helps to alleviate this problem.

Reddy (1984a.b). Reddy and Liu (1985) and Soldatos (1987) have recently applied a
so-called parabolic through the thickness shear strain distribution to analyze laminated
anisotropic plates and shells. The in-plane displacements are cubic functions of the thickness
coordinate, satisfying zero transverse shear strain boundary conditions on the top and
bollom surfaces of the laminate. The same independent degrees of freedom as used in
Reissner-Mindlin theory are used here. but the need for a correction factor is eliminated.
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In light of the above. this paper focuses on the fundamental natural frequencies of
vibration and the critical buckling loads of symmetrically placed laminated composit~>

circular cylindrical shell panels including the following:

(I) Linear displacement and rotations. and linear elastic behavior of cy linJrical shells.
(~) Parabolic transverse shear strain and stress modeling.
0) Bifurcation buckling analysis.
P) Harmonic vibration analysis excluding transients.
(5) Analytical solution method using the Galerkin technique.

There arc four main objectives to this paper. First is the development of a higher
order set of linear strain-displ<tcement relations for the cylindrical panel that incorporate
parabolic transverse shear. The relations could be regarded as a linearized form of Sanders
equations. applicable to deep panels (almost complete cylinders), The theory is not limited
to shallow panels as is Donnell theory as pointed out by Bert and Kumar (1982). In fact.
this last reference considers not only the Sanders and Donnell approximation but also the
Loa. Love and Morley type shell approximations, The strain-displacement relations result
in higher order constitutive relations for the panel. The second objective is the analytical
solution for the fundamental frequencies and critical buckling loads of the cylindrical p.mcl
for different geometries and boundary conditions. Third. the method will be used to analyze
the effects of shear deformation. rotary inertia. and radius of curvature. Intrinsic in this
analysis is the determination of the maximum thickness to radius ratio allowed under the
conditions of assuming zero transverse normal stress. The fourth objective of the paper is
verification of the results oy comparison with other approximate methods and classical
methods. where applicabk.

"Of{ M I JtATIC):,\

The coordinate system for the circular cylindrical shell pand and the degrees offreedom
arc shown in Fig. I. The x and y .Ixes arc located at the mid-surface of the lamin'ltc (.: ::= 0).
The dcgrees of I'recdom IIn(.\", y. t). t'n(X.Y. t). and 1I·(x.y. t) arc the laminate mid-surface
displacements in the x. y. and.: directions. respectively. The degrees of freedom IP ,(x.)'. t)

and ,p,(x.y. t) arc the rotations of the laminate cross-section from the normal at the mid­
stlrl~lce with respect to they and x axes. respectively. R is the radius of curvature. II the
laminate thickness, a the length in the x direction. and h the length in the .1' direction.

x

,, /, ,
" /" /" //R" /" /" /, ,

... /... /
',;/
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Fig. I. Shell panel coordinales and degrees of freedom.
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In order to determine the displacement field. the transverse shear strains. "I,: and 7,,:.
need to be modeled, In classical laminated shell theory. through the thickness shear defor­
mation is neglected according to the Kirchhoff-Love hypothesis that plane cross-sections
remain plane and perpendicular to the laminate mid-surface after deformation. A dis­
placement field that is a first order function of x is required in classical shell theory. Bowlus
et al. (1985. 1987) and Palardy and Palazotto (1990) in their flat plate work modeled
transverse shear strain using Mindlin plate theory. which also required the use of a first
order displacement field. Mindlin plate theory assumes the cross-section remains plane. but
is allowed to rotate from the normal with respect to the mid-surface after deformation. The
assumption of no cross-sectional warping introduces error. especially at the top and bottom
surfaces of the laminate. since the model does not match the boundary conditions of zero
transverse shear strain there. This error is reduced by the introduction of a shear correction
factor. This paper models transverse shear strain parabolically wherein the strains are
maximum at the laminate mid-surface and are zero at the top and bottom surfaces. satisying
the boundary conditions.

To achieve the desired p:'lrabolic transverse shear. a higher order displacement field is
required. as opposed to the first order displacement field used in the Classical and Mindlin
cases. The coordinate displacements in the x and y directions. II and I" will be constant with
respect to :. From Reddy and Liu (1985). the generalized displacement field is:

(
.) '1r(x.y.:. t) = 1+ R "n +:,/1, +='¢~ +: e~

\I'(x. y. t) = \I' ( I )

where (p I. (P:. e ,. and e ~ will be chosen to satisfy the boundary conditions of zero tr.lIlsverse
shear strain at the Iamin'lte top and bottom surfaces.

Linear orthogonal curvilinear coordinates are used to develop the str.lin -displacement
relations (Reddy and Liu. 19~5; Saada. 1974) for a circular cylindrical shell panel. yielding
the Donnell-type cylindrical shell equ'ltions.

The Donnell cylindrical shell pand equations assume:1 R ::::: O. As shown subsequently
this assumption limits Donnell theory to be valid only for small hi R ratios. With no
tr.lnsverse shear. the m'lximum hiR limit under Donnell assumptions is approximately
1;500 (Whitney. 1984). As will be shown. with transverse shear included, the Donnell-type
equations are v.did up to hi R equal to approximately 1/50 (Reddy and Liu, 1985).

For simplicity this paper assumes:/R « I only for the transverse shear strains. "Ix: and
7,,; for the membrane strains e" e•• and 7.,., the following polynomial expansion is made:

1 :
"-0 ~ 1__

: - R'
1+-,

R

(2a)

This approximation allows the strain-displacement relations to be valid for deep panels.
with an hiR maximum limit of approximately 1/5 (see Dennis and Palazotto. 1989, 1990).
The transverse shear strains become:

I'
7..: = I'.: + 1\'.• - R

,'" = II,: + 1\'". (2b)

if one sets ",:(x. y. ±hj2. t) = 0 and ",:(.\:, y. ±h12. t) = 0 to satisfy the laminate surface
boundary conditions. then from eqn (I) it can be shown that:
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cP,=<Pc=O

0, = kfl/!,+II',,). 0~ = k(l/!, +11'.,) eel

where k :::::: -43h~. The displacement field becomes:

u(x.y.:.n = un+:l/!,+:'k(l/!<+Ir,)

r(x.y.:, t) = (I + ~)cn+:l/!r+;1k(I/l,+U',)

II'(X,y,:, t) = II'. (3)

Using this displacement field in the Sanders-type equations. the strain-displacement
relations become:

I:, = II",., +:l/! 1,1' + ;;"k(l/! '" + 1I'"u)

II' I, \ I
I:, = r",,+ R +:1/1,.. ,- R;"l/t",+; k(I/! .."+tr,,.)- R;;~k(I/!\" +w, ... )

I, \ I
- R :"l/!".+: k(I/I", +1/1", +211'.,.)- R :~k(l/l", + II',,,)

i'" :::::: lit, + 11'" + 3k:~(IP, + 11'.,)

i":::: l/!,+II·.,+3k;~(IP\+lr,)

(where in the i'.: equation terms including rnfl< are taken to be higher order).
A shorthand notation can be introduced to rewrite the strains .IS follows:

(4)

1'0 ,,0 0
,

0f."
,,-

" \ ,

I;:~ h: :~ 1\"
,

1\','l;,. ,,-• ,
'\J >;tH +: [(0 +:~ K :~, +;'

,
+;4 [(J (5)= K~\( I;y , \'~. \I l)

., ,,1) 0 /\.1 0 0J ~.: I r: r:

., ~,n 0 /\,1 0 0Ie: I \,:' \',:'

(Note the superscripts on the K terms arc flO[ exponents. They are for identification purposes
only and simply distinguish among the high and low order curvature terms.) The strains at
the laminate mid-surface an::

,n 11o,,,.,
() \I'

l.,. r", .. + R
... H (6)Ill'

",,0 lio" + 1'0..,
II":

1/1,,+11'.,
.lll
i ";

'/1,+11'"

and the curvature tcrms (K) due to bcnding and shear deformation are defined as follows:
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1/1 I.'

I
--1/1,.. ,.
R'

I
- RI/I,·"

3k(I/I,+w. ,.)

3k(I/Ix +w.,)

{

";} {k(I/IX"+Wo.,.,) }
,..; = k(I/I •.• +W. 1·,·)

";,, k(I/I ' ..1' + 1/1"" +2w..",)

{~~ } =1- ~ k<","'!' +w.,.,.»).
1\", I

- Rk(I/I,.• +W..",)

(7)

It is now possible to relate the laminate constitutive relationships in terms of the composite
"lminate coordinates using the terminology from Jones (1975) :

(8)

where k denotes the kth lamina and the individual Qj} are computed using Jones (1975).
Finally, substituting the expressions for the strains in eqn (5) into the constitutive

relations in eqn (8), the stress in the k th lamina of the structural laminate is expressed as:

The resultant forces and moments and the higher order resultant quantities acting on
the laminate are obtained by integrating the stresses in each lamina through the laminate
thickness. Thus. for the laminate with X laminae shown in Fig. 2, the resultant forces and
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Fig. 2. Gt:omt:lry of an iV·layered laminaIe.

moments and higher order quantities are:

" . {a,}. .,
__ ~_.l_-t _I f a, (1._._._._ )(1-

A...,. I ~4. I

r \,. I..

{f)} {J~} f"':! { } ,v f:' { }~ , \, fl""", Ll' • ,. . = . (I --)d-= ~ . (I --)d-
{J I' R I ,,:! r" . - - • _ I :, I r ,:. • - -

( 10)

where: N,} and: (J,) arc the resultant forces. {M,} arc the resultant moments. and {S,}.
[P,}.: L,;·. anu [R,} arc the higher order quantities resulting from the higher order strain
displacement relations.

By substituting eqn (9) into eqn (10). thereby expressing the stresses in terms of the
mid-surl~H;e displacement quantities and the transformed reduced stilfness matrices, the
integration is simplilied because the mid-surface values are independent of =and can come
out of the integral and summation signs. This allows the following notation to be adopted
for the integratt:d laminate stilfness matrices:

(A", B". D", E". F". G", H". 1,/. J,,) =

QI:!
Q:z;z

Q:Z6

(II a)

For the transverse shear:

(II b)

Now eqn (10) may be written as:
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F::} n..
[AJ [B,;l [D'l] [E'I] [f:,] c:?

e?r.\ h

f'} r}..[B,J [D'il [Ei;] [F,;l [Gill ",0M=
"'?,.Jl"

{~:} = r}[Dill [EiJ [f:;l [Gill [Hi;l ",I

K~,.

E} r}x[E'il {Fill [Giil [H;;] [/iil ",2

",~"

E:} r}[F.J [G,J [Hill [['i] [J,;l ",J

"':,.
i.j:: t, 2.6

{Z:} [A ..
,.14 .• DH DJ {""}A~. A" D~, D 5S i'~:

(I ~)::

{R=}
()H [}4\ FH ~4~ {~::}

Rl f)~~ {)H FH f 5< }("

where the hlrge matrix above is (15 x 15) and each of its submatrices are (3 x 3) matrices.
The displacement lidd. strain displacement relations. and the lamimtte resultant quan­

tities in eqn (12) arc used in the energy formulation to find the eqUi.ltions of motion and
boundary conditions.

The fundamental equation used is Hamilton's Principle (Meirovich. 1967):

i"(oT-JU-c5V) dt = 0
I,

( 13)

where T = kinetic energy. U = strain energy, V:: potential energy due to extermtl forces.
and i5 is the lirst variation. The derivation of the kinetic energy. strain energy. and potential
energy is initi4llly carried out and substituted into eqn (13). The result will be five coupled
partial dilTerential equations of motion plus their associated boundary conditions. One
obtains double integrals over the domain which contains the five equations of motion. In
<lddition. two line integrals ,Ire found. They are the geometric and natural boundary
conditions along the four edges of the shell panel. Finally. expressions for the boundary
conditions at the four corners are obtained. In the double integral. the variations of the
degrees of freedom «ill ll • c5l'lI. c5l1'. JI/J ,. and c5I/J.I') are arbitrary and in general are not equal
to lero. yielding the five coupled partial differential equations of motion for the panel at
any time. t:

the double integral product of JUn
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product of Jr'u

product of JII'

-k( Pl.n + P:::,n + :'PIl,n) + Q:::,\ + Ql.x +3k(R:.,\ + R I.,)

I[\' 1. L -'... - [I ]- R ' '::: -/( :.",. + Lo.n )] +;\ 11r" + :",< 6 11',x\ - N:. R -II',n

=:: [,ii"" + lsl)J'L< + 1',i'"., _k7. 17(li".n + li".n) + 1,I)J',... + IIIi"

product of Jl{!x

k(PI.,+Ph,.)+MI.,+M6.,-3kR I -QI- ~(Sh.,.+kLo.,) =:: 1:::iili +i4t1i,+i,li"".

( 14)

whcre the following definition for mass mOlllent of inertia is used:

'l

1', =:: 11+ ~/:::

i:::::::: 1:.+kI4

_ I k
1'::: =:: 1:::+ RII+kI4+ R I,

11 ::::: -k14

_ k
1'1 =:: - k14- 1\

R'

14 =:: I, + 2k II +k ::: I;

is::::: -kI5 -k:::I;, ( 15)

/ii, (i = 1,2,6) are the resultant extern,llly applied quantities assumed to be constant in a
buckling analysis ,lnd zero in an analysis for natural frequencies as is usually the cuse, and
p is the mass density.

These equations of motion will simplify to those of other authors for certain appli­
cations. If R ..... Xi in eqns (14) and (15), the equations of motion and boundary conditions
reduce to those of a flat plate with parabolic transverse shear and rotary inertia (see Reddy,
I984'I,b ; Reddy and Lill, 1985; Reddy and Phan, 1985), If the following terms arc deleted
from the equations of motion in eqn (14):

I
- ,\of2R 6.,
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I
Rk(L z..,.•·+ L 6•.n )

I
- R(Sb.•+ kL 6.• )

I
- R(Sz...+kLz.• ).

349

(16a-e)

the equations of motion reduce to the Donnell-type equations of motion as presented by
Reddy and Liu (1985). For hi R ~ 1/50, the terms in eqn (16a) are small relative to the
other terms in eqn (14). thus establishing the 1/50 limit used by Reddy.

The general equations developed so far need to be tailored to meet the needs of the
specific circular cylindrical shell panel to be considered in this paper. First of all, this paper
will only consider symmetric laminates: that is. laminates that are symmetric about the
mid-surface with respect to both material properties and geometry (fiber orientation angle.
Ok, and thickness. Id. Therefore. the following stiffness matrices apply:

[B"l = [£,,1 = [G"l = [f"l = [01· (17)

Additionally. since p is const.tnt with respect to =(all laminae have the same density), the
inertia terms in eqn (15) may be integrated to yield:

f 1 = /4 = 11 = I, = O.

/1 = 11 = I'll,

I, = 11/,1/12, f s+p/,s/80, f 7= 1'/,7/448,

- II - I J 1 J l )/'z= RP/' /15. /',= ii ph /60, 4= 171'"'1315, s=4pll /315. (18)

The last simplification concerns the acceleration terms in eqn (14). This paper will consider
rotary inertia. In-plane inertia is usually assumed to be small. Consequently, the following
in-plane acceleration terms will drop out: iiu = f u = iiu... = f o.• =O.

During the development of the kinetic energy. time-dependent boundaries were ignored
because this paper is concerned exclusively with harmonic problems. Assuming harmonic
solution forms and applying separation of variables, the five degrees of freedom and their
corresponding accelerations may be expressed as:

lin = lIo(.\', y. I) = lIo(X, y) sin WI

I'n = I'o(.\', y. I) = l'n(X. y) sin wI

1\' = II'(x.y. I) = II'(X, .1') sin wI. 1\' = -wzll'(x.y) sin wI = _W211'

t/J, = t/J.(x.y, t) = t/J,(x.y) sin WI,

t/J.. = t/J,(x. y. I) = t/J ,(x, y) sin WI.

.r· ,
'1', = -w-t/JAx,y) sin wI = -w-t/J..
.1: • . •
'1',. = -w-t/J,.(x.y) Stn wI = -w·t/J.,. ( 19)

where (J) is the natural frequency of vibration.
If these expressions are substituted into Hamilton's principle. bearing in mind that all

the resultant quantities ({N,}. {Al;}. IS,}. {Pi}' {L;l. {Q,}. and {R,}) are functions of the
spatial derivatives of 11 0 , L'o. 11'. t/J" and t/J ... the term sin wI may be factored out from the
entire expression and integrated with respect to time:
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f" I
sin wt dt = - - cos wtl;'.

f I (:J I

(20)

The integrand may be canceled to the right-hand side of the equation. leaving eqn (13)
independent of time.

The concepts presented in these paragraphs are now incorporated into Hamilton's
Principle. which will be useful in the modified Galerkin method. Equation (13) is partitioned
into five equations. Each contains the equation of motion plus the associated boundary
condition for a particular degree of freedom (Bowlus et al.. 1987; Soldatos. 1987; Whitney.
1984). Equation (13) for Uo yields:

(21 )

Equation ( 13) for 1'0 yields:

(22)

Equation (13) for II' yic:lds:

-k( I' ,.• , + 1'2, .. + 21'0, .. )+ Q2,. +3k(R 2" + RI..,)

I - - - -(I )J- R [N 2 -k(L 2,\I' + Lo,n)] +N, II'", +2No lI·.,. - N 2 R -II'.,... t>w dx dy

) {( I) }Ir-o 1'·0+ N2 11'., + /110 11'., 611'1 :::~ dx+k 2P6 - RLo 611' y-h .• -u = o.

Equation (13) fortjl, yields:

(23)

- 3k R I ~ (5"., +kLh")) 61~, dx dy+f (M, + 2kP,) c5t/1xl;:,? dy

+f C\.fo+kPn+ ~(-5h-kLn))6t/1.1:::~dX= O. (24)
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And. finally. eqn (13) for t/J.- yields:

351

f f (14 w1 t/J._ -lsw1w.J' +k(P1.,- +P6..<) + i',ll.•-+M 6..<- Ql

-3kRl~(Sl.•-+kL1.•-»)Jt/JrdXdY+f (M6+kP6)Jt/J,I;:~dy

+f(M 1 +2kP1 + ~(-Sl- 2kLJ)Jt/J<!::~ dx = O. (25)

The final step in the development of the equations of motion and boundary conditions
is to substitute the resultant quantities to eqn (12) and the strain-<iisplacement relations in
eqns (6) and (7) into eqns (21)-(25). [MACSYMA (1985) is used to perform the extensive
algebraic manipulations.]

Several observations can be made concerning the five resulting equations. For a flat
plate. small deflection theory dictates that bending displacement is completely decoupled
from membrane displacement. If the radius of curvature. R. approaches infinity. the five
circular cylindrical shell panel equations reduce to those of a flat plate. The two membrane
equations for Un and 1'0 will consist only of extensional stiffness terms. A,l' and spatial
derivatives of Uo and l'o. as expected. Additionally, the three bending equations for 11', 1/1"
and t/J, will consist only of bending and higher order stitfness terms and spatial derivatives
of no, t/J" and t/Jr. If the higher order stiffness terms arc dropped, kaving only A'i and Di,.

the three fl"lt plate equations will reduce to those of Bowlus et al. (1985. 1987) and Shames
and Dym (1985). which were obtuined from the lower order Mindlin tmnsversc shear strain
modeling. For R not equal to infinity. membrane and bending displacement arc coupled.
To find the natural frequencies and buckling loads of the circular cylindrical shell panel,
all five equi.ltions must be solved simultaneously. This solution will be approximated using
the modified Galerkin technique.

Two types of boundary conditions arc considered: simply supported conditions on all
four edges of the panel and c1i.lmpcd supports.

For the panel simply supported on all sides, the following bending boundary conditions
exist:

at x=O and x=a

11'= t/J. =0

and

at .1'=0 and y=b

w = t/J< = o.

As Jones (1975) states. there are four kinds of membrane simply supported boundary
conditions possible. An S-2 type condition is used here such that at an edge of the panel.
the normal displacement is not zero and the tangential displacement is zero:

at .\"=0 and .\"=a

Uo :F 0 and Vo = 0; t/J.< :F 0

and

at y=O and y=b

Uo = 0 and l'o :F 0; t/J •. = o.
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Therefore. the admissible functions to be used within the modified Gakrkin tef.:hnique
become:

H \

tIt,(x.y) = L I Am"cos(nmxa)sinlmrl' h)
m I rt-= 1

It

tIt,(x. .I') = I L Bm" sin (nITCX, a) cos (mryh)
In:::!: 1 lJ= I

It

11'(.\",1') = ') ') c"m sin (nmx a) sin (mr.r/h)• ~ _ • i

'" In=l

It \

/lo(x,}') = L L Em" cos (III7[X.(/) sin (mr.yh)
m I n= I

It \

t'o(x.y) = I L Gm" sin (mrrxia) cos (IIrry/h).
In= I,,=: I

The single terms associated with the variations of the degrees of freedom are:

()/lo -+ cos (I'rrx/a) sin (<fny!h)

<kn -+ sin (I'n.>.:/(/) cos (qny/h)

()II' -+ sin (I'rrx/a) sin ({/ny/h)

()Ip, -+ cos (I'nx!a) sin (qrry/h)

()lp, -+ sin (I'nx/II) cos (<fny;'h).

(26)

(27)

Notice the indices in eqn (27) are I' and q. The single terms that replace the variations of
the degrees of freedom govern the number of Galerkin equations. Then:fore, the number
of terms in each equation is governed by III and II. and the numher of equations is governed
by p and q.

For the panel clamped on all sides. the following bending houndary conditions exist:

at .>.:=0 and x=(/

II' = 1/1,. = tit,· =0

and

at \,=0 and y=h

1I'=tIt, = Ip, = o.

The membrane boundary conditions will be the same as those in the previous section; from
Jones (1975), a C-2 type boundary condition:

at x=o and x=a

/I" =I 0 and 1'" = 0

and

at 1'=0 ,lI1d \' = h

tI" = 0 and 1"0 =I O.

The admissible functions become:
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"I'll

1/1 .(x.y) = L L Amn sin (mrrx!a) sin (nrrYlb)
m=ln.:=1

\/ 'lI

I/I,(x.y) = L L Bmnsin(nmxla)sin(nrrylb)
m=ln=1

\/ 'II'

ll·(X.y) = L L Cmn sin (mrrxla) sin (nrry/b)
m-In-I

.1/ ...

uo(.~.y) = L L Emn cos (nmxla) sin (nrry/b)
m=ln=1

\I ..

r,,(x.y) = L L Gmn sin (mrrx/a) cos (t/rrylb).
",=1,,=1

The single terms associated with the variations of the degrees of freedom are:

<5uo sin (prrxla) sin (qrry/h)

<51'0 sin (prrx/a) sin (qrry/h)

()I\' sin (prrx/a) sin (qrry/h)

<51/J, cos (prrx/a) sin (qrry/h)

()I/I, sin (I'rrx/a) cos (qrry/h).
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(28)

(29)

And. as in the simply supported case. the indices for the single terms arc p and q; m and 11

govern the numher of terms per equation. and I' and <f govern the numher of equations.

RESULTS AND DtSCUSSION

Seveml analytical studies were performed. First. a case comparison study with the
modified Donnell cylindric..1shell p..nel solutions w..s carried out. The effects of transverse
shear dcformation. mdius of curvature v'lriation...nd rotary inertia were investigated.
Fin.. lly. the inl1ucnce of varying the length to span ratio was studied.

Lami1lated circular cyli1ldrical s!l('II1'a1lell'rtJI'efties
The cylindrical shell panel studied in this paper is constructed of graphite-epoxy

material and has the following material properties:

£1 = 2.10 E+07 psi

£! = 1.40 E+06 psi

G I1 = 6.00 E+05 psi; Gil = G!J = 0.8G 12

I'll = 0.3

II = 1.42454 E -04 slugs in··1 (0.55 Ib in' J).

Two ply by-ups were investigated: [05o/90~]. and [+4550 / ±4550]. (both of which for
convenience will be referred to as [0/90], and [±45].). The latter ply lay-up will introduce
more shear stiffness terms into the formulation. The above material properties will be used
in all the analyses except for the Donnell comparison investigation.

All panel configurations used in this study displayed excellent frequency and buckling
load convergence towards exact answers. This docs not prove convergence. but it definitely
demonstrates convergence tendencies. The drawback with the Galerkin technique is that in
order to obtain extremely accurate answers that require M and N be greater than 10. a
great deal of computer resources is required. This higher accuracy requirement has more
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application with the buckling loads. since they do not comerge a;,; fast a;,; the natural
freq uencies.

Comparison stzuZI' with Donnell solution
Reddy and Liu (1985) examined laminated circular cylindrical shell pands using

Donnell theory assumptions with parabolic transverse shear madding. The equations aI'
motion for the circular cylindrical shell panel. eqn (14). will degenerate down (0 the Donnell
equations of motion by dropping the appropriate higher order terms in eqn (16). Reddy
found an exact solution to the equations of motion for simply supported boundary con­
ditions using Navier's method. The Navier solution exists only if the following stitfnesscs
are equal to zero: A'b = Dib = Fib = H'6 = 0 (i = 1.2) and A~, = D., = F J < = O. This
restricts his analysis to panels with [0/90]. ply lay-ups.

Reddy used different engineering constants in his work than those used in this paper.
The following values were used in the comparison:

£1 = 2.1 E+07 psi

£~ = 8.4 E+05 psi

Gil = 4.2 E+05 psi

Gil = GI~

G~l = 1.68 E+05 psi

~·1~=0.25

p = 1.0 slugs in 1 (note an extremely large value).

Tank: I compares Reddy's answers using the Navier solution with those of this paper lIsing
the Galerkin technique. Note that Donnell theory limits the maximum II. R ratio to be anout
1/50, Tahle I validates the aceur<lcy of the higher order theory as it applies to Donnell­
type prohlems, The excellent agreement between the higher order theory and the Donnell
equations is attributed to the hi R region involved. As explained earlier, since the maximum
h'R value is 1/50. the higher order terms in eqn (IH) approach zero; the higher order
equations of motion reduce to Reddy's Donnell equations.

Radills 0/ (,lIn'allire analysis
The effects of varying the radius of curvature. R (or. equivalently. h; R). is examined

in this section. As noted previously. for a flat plate hi R = O. and a membrane eompk:tcly
deeouples from bending. The membrane Galcrkin equations. those associated with II" and
1'1). are coupled together, but as a whole are decoupled from the bending Gakrkin equations:
those associated with II', I{I" and l{l ,. As hi R is increased from 0 up to the maximum value
of 1/5, membrane and bending couple together. the cylindrical panel becomes deeper and

Tanlc: I. Donncll frcqucncy comparison fundamcntal frCl[llCncy (rad, "
, .._.,~ ,-,--.,,_.,---- - -- ----.

R (in) hjR Navicr Galc:rkin Error (1
1

•1 ;

_.-.<.•._.~,""_•. - -
a=h= 100.0 in

500.0 0.002 1.86602 1.8697 +O.~

1000.0 0.001 1.52416 1.52458 +0.03
2000.0 0.0005 1.42519 1.42529 +0.007
5000.0 0.0002 1.39585 1.39623 +0.03

(J = h = 10.0 in
50,0 0.Q2 108.4237 108.6415 +0.2

100.0 0.01 108.0571 108.109 +0.05
200.0 0.005 107.9655 to7.9753 +0.009
500,0 0.002 107.9655 107,9379 -0.03

Simply supported boundary condition. [O/90j .. Ir = 1.0 in.
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Fig. 3. Curvature effects on frequency. Simply supported boundary. [0/901•.

slifTer. and the natural frequencies and buckling loads increase. The following specific hIR
ratios are investigated:

[

O'

II = 1/50:

R 1/20:

115 :

Flat Plate

Donnell Equation M'lximum limit

Intermediate Value

Maximum Limit of Higher Order Theory.

The figures, subsequently shown, are plots of w or fJ I vs hIlt. The panels have equal
length and circumferenti'll dimension; alb = I, and M = N = 6 is used as the degree of
accuracy. (The two buckling load plots for IIIR = 115 required M = N =8 for bill values
of 5. 10, and 15 and M =N = 10 for blh values of20 and 30 lo obtain proper convergence.)
The circumferential length to thickness ratio (hlh) is varied from 5.0 to 50.0.

The four fundamental frequency plots are shown in Figs 3-6. All curves follow the
same basic trends: the frequencies are high at blh = 5.0 and then decrease as the panel
gets thinner. apprmlching constant values asymptotically at blh vnlues of 40-50. Also. as

• IIIRoO
• IllIIotlSO
• IIIR.1120

• MI.tlS

4020

25.0
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i 35.0
..!!!
1: 30.0
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o
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Fig. 4. Curvature effects on frequency. Simply supported boundary. [±45)•.
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Fig. 5. Curvature effects on frequency. Clamped boundary. [Oi90).

expected. the frequencies increase due to membrane and bending coupling as hiR is increased
from 0 to 1/5. The effect of this coupling is shown in Table 2 in which panel to flat plate
frequency comparisons are made.

With few exceptions. the [± 45]. laminates generally yield higher frequencies than the
[0/90}, laminates for both boundary conditions considered. The [±45), laminates have in­
plane shear stilfness terms (D I6 • D 2". F I". F2". H tf.. H 2h • )1'" )2h) that account for these
higher frequencies. Referring to Figs 3 and 4. for the simply supported boundary condition.
the dilference in frequency for the two laminates becomes greater as the curvature increases.
For hiR = O. the frequencies arc about 20% higher for the [±45), laminate for atl hill
vulues. For hlR "" 1/50. the frequencies .Ire about 20% higher at hlh = 5 and arc about
50% higher at hlh = 50. For hlR = 1/20. the frequencies vary from 20% higher to 80(Yn
higher. and for hiR = 115 the frequencies arc about 25% higher for all hill v.lIues.

For the clamped boundary condition. the [0/90]. laminate yields higher frequencies
than the (±451, laminate for flat plates (hi R =0). But. as the curvature increases, the
frequencies of the (±451. laminate become greater than those of the [0/901, laminate (see
Figs 5 and 6). For hiR "" I 50. the frequencies for both laminates are roughly equal at
hlh = 5. but the frequencies are about 30% higher for the [± 45]. laminate at hill = 50. For

50.0

45.0

40.0

U 35.0CD
fit

:0 30.0
~

25.0
0
d 20.00
0....

t5.0S-
to.O

5.0

0.0
0 20

b/h

• ItIRa4
• ItIR.tl50
... ItIR.tl1O

• ItIR.liS

40 60

Fig. 6. Curvature effects on frequency. Clamped boundary, [±45J..
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Table 1. Frequency coupling effet."1S

(090L

357

h.R h h;: 10 h Jr;: 30 h h 10 h h;: 30

Simply supported boundary conditions
t 5 1.54 45:!

I 20 1.04 2.65

Clamped boundary conditions
15 1.17 2.67

120 1.0:! 1.54

2.02 4.37
1.14 :!.48

1.78 3.37
1.10 :!.05

W p ;: flat plate natural frequency; II ;: 1.0 in; II." ;: I.

hiR = 1/20. the frequencies vary from roughly 6% higher to 20% higher. and for hlr = liS
the frequencies are roughly 30% higher.

Table 2 displays a consistent trend mentioned in the previous two paragraphs; in
general. as the curvature of the panel increases. the membrune and bending coupling has a
greater effect at larger hlh values. Larger h,II values physically equate to greater arc length
around the panel. In f.lct. for hi R = 1/5 at hlh = 30 the cylindrical panel is almost a
complete cylinder.

For the S<lme ply lay-up. the frequencies for the clamped boundary condition are higher
than those for the simply supported boundary condition. For the [0/901, luminate the
difference is quite dramatic. For hiR vulues of 0 and 1/50. the frequencies are 20% higher
athllr = 5andover 100'Yu highcrathllr = 40-50. r:orh!f~ = 1/20 the frequencies are roughly
30% higher for all hlh values, and for hiR = 115 the frequencies arc roughly 20% higher.
rigures 4 and 6 show the same trend for the [±451. laminate. The same trends of the
frequency plots .Ire evident; high l"Hu.:kling loads at small hlh values. decreasing asymptot­
ically to constant loads ut hih vulues of 40 -50. There arc very significant increases in the
buckling loads us hiR is increased. and as Taok 3 shows. the membrane and bending
coupling has a greater ell'cct as the circumlcrential distance around the panel increases.

The [±45]. laminate yields higher buckling loads for the clamped boundary condition
than for the simply supported boundary condition for hiR values ofO. 1/50. and 1/20. (See
Figs 7 and 8.) The buckling loads are roughly the same for both boundary conditions for
hiR = 1/5. Similurly. us Tablc 4 indicutes. the [0/901, luminate yields buckling loads for the
clamped boundary condition that are upwards of 50% higher than the buckling loads for
the simply supported boundary condition. as would be expected.

450.0

k400.0

• h,R.o
350.0 • /\IR.tISO

"2 ... /\IR'II20

g 300.0 • IliR,IIS

C) 250.0
0
C)

200.0C)

t:
IZ 150.0

100.0

50.0

0.0
0 20 40 60

b/h

Fig. 7. Curvalure effects on bUl:kling. Simply supported boundary. r±45)•.
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Fig. 8. Curvature effects on buckling load. Clamped boundary. [± 45),.

Rotary inertia analysis

Another feature of this paper is the incorporation of rotary inertia into the vibration
problem. Referring to eqns (14). the following accelerations contribute to the rotary inertia:
Ii".,. Ii".". Ii"". Ii"",. lb',. If,.,. If,. ,f•. ,. If rotary inertia is eliminakd. the only inertia term left
is ',Ii'· on the right-hand side of the equation of motion for II' in eqn (I"), Likewise. the
Galerkin equations .tll reduce to a single term on the right-hand sides. The end result is a
much less populated m.tss/inertia matrix,

Bowlus (19H7) and Palardy and Palazotto (1490) ooth found rotary inertia to oe
negligible for the vibration of flat plates modeled with Mindlin transverse shear theory. The
results arc the same for this paper. Several cases were run for ooth simply supported and
clamped boundary conditions. which included various III R ratios. ranging from O(flat plate)
to 1/5. and various a/II (h/II) ratios. The results were all the same. With rotary inertia
removed. the: fundamental freque:ncies are only about 0.5'Y.. higher. The overall conclusion
is that rotary inertia has a negligible eflcct for first mode analysis. It does become more
important for the higher modes. however.

TraJlSl'erSt! norlllal stress cOf/sit/eratiof/s
The transverse normal stress. (J:. was set e:qual to zero under the assumptions of plane:

stress constitutive relations. This is a good assumption for most geomelric:s. and is therefore
used quite extensively in plate/panel analyses. Some of the geometries analyzed in the
previous sections "stretch" the accuracy limitations of the (J: assumption and warrant
specific comments. First. the flat plate is examined.

For nat plates. the validity of assuming (J: = 0 is dependent upon the minimum value
of a/h (or hill) chosen. Koiter (1960) states that the transverse normal slress is in general
of order 11 1/ L 1 times the bending stress. and transverse shear strain is !liL times the bending

Table 3. Buckling load coupling effects

Simply supported Clamped

lriR

15
1.20

h,lr = 10

1.63
1.08

hilr = 30

9.35
3.45

h:" = 10

IAJ
106

h," = 30

5.61
2.22

il" = flat plate buckling load: " = 1.0 in. i/'" = I : [± 451..
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Table 4. Buckling loads for {0!901, laminates

Critical buckling load (lb in - ')

359

5
10
50

Simply supported

39:;:;81.3
104118.3
940:;0.0

Clamped

454819.:;
195617.0
134723.6

R =:;0.0 in; h = 1.0 in; a;b = 1.

stress. where L is the smallest wavelength of the deformation pattern on the mid-surface.
For plates. L is almost always equal to the smallest dimension (a or b). Therefore, for the
plate:

(1: ~ 1l 1/a 1«(1.,(1,)

f T:. ',.: ::::: hja«(1". (1,.). (30)

A rule of thumb in classical pl~lte theories is the minimum alll ratio 10. or (1: ::::: 0.0 1(11<' (1.).

Referring to the previous sections. the minimum (l11l (hill) ratio used is 5; f1: is roughly 4%
01'(11,.(1,.) and 20''10 of (f,:. ',.:). and therefore becomes important for these very thick plate
configurations.

Shells incorporate the ": approximations with respect to the flat plate. plus an additional
accur~ICY considcmtion. As Koitcr (1960) states, the transverse normal stress is of order
hfR times the bending stress. For the shell pand :

(1: ::::: hi R«(1., 11.)

f I:' ',: ::::: hi1.«(1" (1.).

When combined together, these elllt:ltions give:

(31)

(32)

By the mere I1ICt that the m~lximum hiR ratio used in this paper is 115. (1: becomes important
because it is in re~llity roughly 20% of the bending stresses. For the smaller IJIR ratios used.
the (1: effect is negligible. except for the regions of small alIl. as explained above.

Using eqn (32), (1: may be further examined for the Il/R ratio of 1/5. L is not always
equal to the dimension of the shell panel; it varies with bIll, and is determined from the
mode shape. The longitudinal mode shape generally behaves like that ofa flat plate: usually
one full sine wave or one half sine wave. The circumferential mode shape varies, depending
on the geometry and on the problem (buckling or vibration).

The panel generally buckles into six sine waves in the circumferential direction;
L ::::: bl6 and LIR ::::: bl30 for III R = 1/5. From eqn (32), (1: is roughly 15% of (t,m t y:) at
hill = 5, where the transverse shear is very prominent. (1: ::::: (t.:. !.;) at bill = 30. but the
transverse shear here is very low; so, the effect is negligible. .

For the vibr~ltion problem involving hiR = 1/5, there is. in general. only 1-1.5 full sine
waves in the circumferential direction; at LIR ::::: 2b/15, (1: becomes important at blh = 5
because it is roughly 66% of the transverse shear in a region where the shear is very
prominent.

The overall conclusion is that (1: is important for hiR values of 115 and alll (hi"> values
of 5. especially for the vibration problem. The overall trends displayed by the data.
however. arc accurate.

Whitney (1987) presents a method that includes (1: effects and would improve the
accuracy for these particular geometries. In his model. the transverse displacement I\' is a
linear function of:: and has the form: w(x.y.::) = I\'..(x.y) +::¢(x.y). where wlI(x.y) is the
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mid-surface transverse displacement. and ¢(x. y) is an additional degree of freedom that
must be included in the constitutive relations and equations of motion.

CO:\CLCSIO:\S

A theory applicable to symmetrically laminated anisotropic circular cylindrical shell
panels of arbitrary geometries has been developed. The theory includes a through the
thickness parabolic transverse shear stress and strain distribution and is valid for
o~ h'R ~ I 5. Analytical solutions for the fundamental frequencies. critical buckling loads
and the corresponding mode shapes are obtained using the modified Galerkin technique.
Simply supported and clamped boundary conditions were investigated. Based upon the
analysis. the following conclusions are presented.

The strain-displacement relations are very accurate for 0 ~ II. R ~ I 10. The results
were verified against the Donnell solutions for a~ h R ~ J 50. Since there is no :,R
variation in the transversc shear strains. and since 17: and I:, are assumed equal to zero. somc
precision is lost for h.R values of I 15. However. the generated results show very logical and
consistent trends at this h/R limit. and consequently the theory here is assumed to be a very
good approximation.

Thc modified Galerkin technique proved to be an excellent method for solving the tive
coupled partial ditferential cquations of motion and boundary conditions. The method
converged to exact frequcncics vcry quickly for all geometries. Convergence was slower for
the buckling problem. particularly for the damped houndary condition at hiR = liS and
high hlh ratios. Thc method still works for these cases. but at the cost of a great deal of
computer time.

Increasing hi R from 0 to I is increased nll:ll1brane and hending coupling. and drove
the frequencies and huckling loads to higher values for hoth houndary conditions. For
both boundary conditions. the [± 45). laminates yielded higher frequencies than the [0/90)'
laminates. due to the additional in-plane and transverse shear terms in the former. Both
[± 45). and [090). laminates yielded higher freq uencies for clamped houndary conditions
than for simply supported boundary conditions.

Buckling loads behaved ditIcn:nt/y. The [± 45j, laminates yielded higher buckling loads
than the [Oi90j, laminate for simply supported boundary conditions. hut [0'90). buckling
loads arc higher than [±45). buckling loads for clamped houndary conditions. The [±45).
laminates have slightly higher buckling loads for clamped versus simply supported boundary
conditions, except at hiR = 1/5 where the buckling loads for both boundary conditions are
roughly equal. Finally. [0/901, laminates have much higher buckling loads for clamped
boundary conditions than simply supported boundary conditions.

Rotary inertia dlccts were negligible for all panel configurations examined. Fun­
damental frequencies werc only about 0.5% higher with rotary incrtia removed.
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