Int. J. Solids Structures Voi. 28, No. 3, pp. 141-361. 1991 0020-7683/91 $3.00+ .00
Pnnted 10 Great Britain. Pergamon Press pic

VIBRATION AND BUCKLING CHARACTERISTICS
OF COMPOSITE CYLINDRICAL PANELS
INCORPORATING THE EFFECTS OF A HIGHER
ORDER SHEAR THEORY

A. N. PaLazotro and PETER E. LINNEMANN
Air Force Institute of Technology. Wright-Patterson AFB, OH 45433, US.A.

(Received 29 September 1989 . in revised form 30 October 1990)

Abstract—An analytical study is conducted to determine the fundamental frequencies and critical
buckling loads for laminated anisotropic circular cylindrical shell panels. including the effects of
transverse shear deformation and rotary inertia. by using the Galerkin technique. A linearized form
of Sanders shell strain-displacement relations are derived. which include a parabolic distribution
of transverse shear strains. The theory is valid for laminate thickness to radius ratios, #/R. of up to
1/5. Higher order constitutive relations are derived for the laminate. A set of five coupled partial
differential equations of motion and boundary conditions are derived and then solved using the
modified Galerkin technique. Simply supported and clamped boundary conditions are investigated.
Comparisons are made with the Donnell shelt solutions. The effects of trunsverse shear deformation
and rotary inertia are examined by comparing the results with classicitl solutions, where applicable.
The radius of curvature is varied to determine the etfects of membrance and bending coupling. The
theory compares exactly with the Donnell solutions, which are valid up to #/R = 1/50. As expected,
as length 1o thickness ratios are reduced, shear deformation effects significantly lower the natural
frequencies and buckling loads. Analysis also shows that rotary inertia cffects are very small. Finally,
as ;R is varied from 0 (flat plate) o 1S (maximum limit), the frequencies and buckling loads
increase due to membrane and bending coupling,

INTRODUCTION

Because of the potentially large spatial variations of stiffness propertics in composite shell
structures due to tailoring, three-dimensional stress and strain effects become very impor-
tant. Whereas classical two-dimensional assumptions may be valid for an identical shell
structure consisting of isotropic materials, they may lead to gross inaccuracies for an
orthotropic construction (Dennis and Palazotto, 1989, 1990).

Past rescarch has clearly indicated the need to refine the classical Kirchhoff-Love shell
theories to better predict the stability and dynamic responses of composite cylindrical shell
configurations, The KirchhofT-Love theory assumes normals to the shell mid-surface before
deformation remain normal after deformation, effectively neglecting transverse shear
strains. These classical theories predict shell panels that are too stiff, resulting in high
frequencies and buckling loads. L. H. Donnell applied the Kirchhoff-Love theory to
cylindrical shell panels. The need to include transverse shear effects was first recognized by
Reissner (1945), followed by Mindlin (1951), who included rotary inertia effects in the
dynamic analysis of plates. The Reissner-Mindlin theory assumes the cross-section remains
planc, but is allowed to rotate from the normal with respect to the mid-surface after
deformation. Additional independent degrees of freedom are included, which enables the
transverse shear to be fully described by the shell mid-surface degrees of freedom and the
thickness coordinate. This first order theory does not satisfy the boundary conditions of
zero transverse shear on the top and bottom surfaces of the laminate because of the constant
shear angle assumcd. The introduction of a correction factor helps to alleviate this problem.

Reddy (1984a.b). Reddy and Liu (1985) and Soldatos (1987) have recently applied a
so-called parabolic through the thickness shear strain distribution to analyze laminated
anisotropic plates and shells. The in-plane displacements are cubic functions of the thickness
coordinate, satisfying zero transverse shear strain boundary conditions on the top and
bottom surfaces of the laminate. The same independent degrees of freedom as used in
Reissner-Mindlin theory are used here, but the need for a correction factor is eliminated.
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In light of the above, this paper focuses on the fundamental natural frequencies of
vibration and the critical buckling loads of symmetrically placed laminated composite
circular cylindrical shell panels including the following

(1) Linear displacement and rotations. and linear elastic behavior of eylindrical shells.
(2) Parabolic transverse shear strain and stress modeling.

{3) Bifurcation buckling analysis.

(4) Harmonic vibration analysis excluding transients.

{5} Analytical solution method using the Galerkin technique.

There are four main objectives to this paper. First is the development of a higher
order set of linear strain-displacement relations for the cvlindrical panel that incorporate
parabolic transverse shear. The relations could be regarded as a linearized form of Sanders
equations, applicable to deep pancls (almost complete cylinders). The theory is not limited
to shallow panels as is Donnell theory as pointed out by Bert and Kumar (1982). In fact,
this last reference considers not only the Sanders and Donnell approximation but also the
Loo. Love and Morley type shell approximations. The strain-displacement relations result
in higher order constitutive relations for the panel. The second objective is the analytical
solution for the fundamental frequencies and critical buckling loads of the cylindrical panel
for different geometries and boundary conditions, Third, the method will be used to analyze
the effects of shear deformation, rotary inertia, and radius of curvature. Intrinsic in this
analysis is the determination of the maximum thickness to radius ratio allowed under the
conditions of assuming zero transverse normal stress. The fourth objective of the paper is
verification of the results by comparison with other approximate methods and classical
micthods, where applicable,

FORMULATION

The coordinate system for the circular eylindrical shell pancland the degrees of freedom
are shown in Fig. 1. The yand y axes are located at the mid-surface of the laminate (= = 0).
The degrees of freedom w, (v, p, 0. vy, p 2), and w(x, 1) are the laminate mid-surface
displacements in the x, y, and = directions, respectively. The degrees of freedom o (v, 3, 1)
and ¥, (x, ¥, 1) are the rotations of the laminate cross-section from the normal at the mid-
surfuace with respect to the v and v axes, respectively. R is the radius of curvature, & the
laminate thickness, « the length in the x direction, and A the length in the v direction.

Fig. 1. Shel} panel coordinates and degrees of freedom.
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In order to determine the displacement field. the transverse shear strains, y,. and y,..
need to be modeled. In classical laminated shell theory, through the thickness shear defor-
mation is neglected according to the Kirchhoff~Love hypothesis that plane cross-sections
remain plane and perpendicular to the laminate mid-surface after deformation. A dis-
placement field that is a first order function of x is required in classical shell theory. Bowlus
et al. (1985, 1987) and Palardy and Palazotto (1990) in their flat plate work modeled
transverse shear strain using Mindlin plate theory. which also required the use of a first
order displacement field. Mindlin plate theory assumes the cross-section remains plane, but
is allowed to rotate from the normal with respect to the mid-surface after deformation. The
assumption of no cross-sectional warping introduces error. especially at the top and bottom
surfaces of the laminate. since the model does not match the boundary conditions of zero
transverse shear strain there. This error is reduced by the introduction of a shear correction
factor. This paper models transverse shear strain parabolically wherein the strains are
maximum at the laminate mid-surface and are zero at the top and bottom surfaces, satisying
the boundary conditions.

To achieve the desired parabolic transverse shear, a higher order displacement field is
required, as opposed to the first order displacement field used in the Classical and Mindlin
cases. The coordinate displacements in the x and y directions,  and v, will be constant with
respect to =. From Reddy and Liu (1985), the generalized displacement field is:

wx. vz ) = ug+ s +237¢, +:°09,

(o) = (l + )(‘(,+:uﬁ,+::¢: +:'9,

=

WX,y 1) = w (N

where ¢y, ., @, and O will be chosen to satisfy the boundary conditions of zero transverse
shear strain at the laminate top and bottom surfuaces.

Lincar orthogonal curvilinear coordinates are used to develop the strain -displacement
relations (Reddy and Liu, 1985 Saada, 1974) for a circular cylindrical shell panel, yielding
the Donnell-type cylindrical shell equations.

The Donnell cylindrical shell panel equations assume /R = 0. As shown subsequently
this assumption limits Donnell theory to be valid only for small 4/R ratios. With no
transverse shear, the maximum #/R limit under Donnell assumptions is approximately
17500 (Whitney, 1984). As will be shown, with transverse shear included, the Donnell-type
equations are valid up to i/ R equal to approximately 1/50 (Reddy and Liu, 1985).

For simplicity this paper assumes z/R « | only for the transverse shear strains, y,. and
7v:+ for the membrane strains ¢, ¢,, and ,,, the following polynomial expansion is made :

1

e | =

(2a)

Xt

-

I+E

This approximation allows the strain-displacement relations to be valid for deep panels,
with an 4/ R maximum limit of approximately 1/5 (see Dennis and Palazotto, 1989, 1990).
The transverse shear strains become
v
Y = U, + W, — E

‘I‘\'.‘ = ll,.' + “'._l" (2b)

if one sets y..(x. 3, £4/2,0) =0 and y.(x,py. +4/2,0) =0 to satisfy the laminate surface
boundary conditions, then from eqn (1) it can be shown that:
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where k = —4 34", The displacement field becomes :
X3, 2 0) = g+ 2 2k 4w )
elx.v. oty = (5 + %)z‘n +op, Tk 4w,
wix, o) =w. 3)

Using this displacement field in the Sanders-type equations, the strain-displacement
relations become:

Ec= ta,+ 2 F IR WL )

W P, |
€ =y, + R + o~ R P Nl Y {7/ S 2 Sk, )

!

1
:“w &= “I),\ +l‘0,\ '+‘“:('[’\.\ +'p|.\ + 2[\, ((.N,. '"”l)». ))

L i
- R:-¢fxm+:§§(zl&nv+*,1§sp\+z“‘,n}“ R :‘xk“i&s,‘%';i‘,u}

i

e = w3, )
e =W oEw 3R, ) )

i

{where in the 7, equition terms including v,/ R are tuken to be higher order).
A shorthand notation can be introduced to rewrite the strains as follows

£ & K 0 K 0

g, gl I I N K}

Fo £=9 7w pHI KL pAITORL p T RL PR (5)
- 9 0 . 0 0

- 0 0 I 0 0

(Note the superscripts on the x terms are naz exponents. They are for identification purposes
only and simply distinguish among the high and low order curvature terms.) The strains at
the laminate mid-surface are:

~
0 ( o
ol
o 1Y
£ ty ot
Lo R 6
fxy = < > { )
0 "U,\' + Cox
“t
AT
0 o+ Wy
s
. D T

and the curvature terms {x} duc to bending and shear deformation are defined as follows:
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It is now possible to relate the laminate constitutive relationships in terms of the composite
laminate coordinates using the terminology from Jones (1975):

O Qe
0: @i &y
Q!b Q66 k ny

il

where k denotes the kth lamina and the individual §,; are computed using Jones (1975).
Finally, substituting the expressions for the strains in eqn (5) into the constitutive
relations in eqn (8), the stress in the kA th lamina of the structural laminate is expressed as:
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gy 0
L0 6
0.
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The resultant forces and moments and the higher order resultant quantities acting on
the laminate are obtained by integrating the stresses in each lamina through the laminate
thickness. Thus. for the laminate with .V laminae shown in Fig. 2, the resultant forces and
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Fig. 2. Geometry of an N-layered laminate.

moments and higher order quantities are:

"Vl 1‘11 S] P| Ll "2 a,
Nyp A M {8 4P AL, =J g, (1225 22N d:
W2
IIV,, 1"4, .St. Ph L(- rn'
U\
N[
= ZJ a, 0 (12,22, 2% d:
A=1d%
r\" A

Q: R: = " - = tr: - -
{Ql} {R‘}—J"”{ v } )d Agl ,{T\:}.“H )d: (10)

where {N,, and {Q,] are the resultant forces, {M,} are the resultant moments, and {S,},
[P VLY and (R} are the higher order quantities resulting from the higher order strain -
displacement relations,

By substituting eqn (9) into eqn (10), thereby expressing the stresses in terms of the
mid-surface displacement quantities and the transformed reduced stiffness matrices, the
integration is simplificd because the mid-surface values are independent of = and can come
out of the integral and summation signs. This allows the following notation to be adopted
for the integrated laminate stiffness matrices

(A,. B, D, F,.G,H,.1,J)=

J[0n On Ou]
Y10 0 QO J (12,238,230, 28, 25,2527, 2%d: ij=1.2,6. (lla)
k=1 - Lot

Qlf\ Q:() Q(\l\ k

For the transverse shear:

v [Qus Q T . .
(A, D, F,) = Z[Q-as Q::]‘j (12324 dz ij=4.5. (11b)

k=1

Now eqgn (10) may be written as:
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R. Dy Dy Fay Fus {;\:}
R, Dy Dy Fys Fos | (k.

where the kirge matrix above is (15 x 15) and each of its submatrices are (3 x 3) matrices.
The displacement field, strain -displacement relations, and the laminate resultant quan-
tities in egn (12) are used in the energy formulation to find the equations of motion and
boundary conditions.
The fundamental equation used is Hamilton’s Principle (Meirovich, 1967):

lemo‘u“mdz:o (13)

where T = kinctic energy, U = strain energy, ¥ = potential energy due to external forces,
and & is the first variation, The derivation of the kinetic energy, strain energy, and potential
energy is initially carried out and substituted into egn (13). The result will be five coupled
partial differential equations of motion plus their associated boundary conditions. One
obtains double integrals over the domain which contains the five equations of motion. In
addition, two line integrals are found. They are the geometric and natural boundary
conditions along the four edges of the shell panel. Finally, expressions for the boundary
conditions at the four corners are obtained. In the double integral, the variations of the
degrees of freedom (duy, vy, dw, S, and dy,) are arbitrary and in general are not equal
to zero, yiclding the five coupled partial differential equations of motion for the panel at
any time, £

the double integral product of du,

1 - s
ivl.;v -+ IV(,J. — i"‘é‘ A‘I{,J» = f;ft:g + Izlifx — 13 ﬁ"_},
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I - - e
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where the following definition for mass moment of inertia is used ;

2

pllz 20 20 24 s ds
,

([|,13‘11,It4.1§,17) =j

h:

| k
1,+ kll'*'l\ll"i" R I

I} = —ki,

it
|

k
== —/\'14"‘1“21;

=~
N
i

1"-4 = 1\+2/\l5+k1[7
[—5:‘—1\'15“"/\':[7, (i5)

N, (i = 1,2,6) are the resultant externally applied quantities assumed to be constant in a
buckling analysis and zero in an analysis for natural frequencies as is usually the case, and
p 1s the mass density.

These equations of motion will simplify to those of other authors for certain appli-
cations. If R = » in egns (14) and (15), the equations of motion and boundary conditions
reduce to those of a flat plate with parabolic trunsverse shear and rotary incrtia (sce Reddy,
1984a.b; Reddy and Liu, 1985; Reddy and Phan, 1985). If the following terms are deleted
from the equations of motion in eqn (14):

Suy: -~ 'R A,

|
IR M,

drg:  —
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the equations of motion reduce to the Donnell-type equations of motion as presented by
Reddy and Liu (1985). For /R = 1/50, the terms in eqn (16a) are small relative to the
other terms in eqn (14), thus establishing the 1/50 limit used by Reddy.

The general equations developed so far need to be tailored to meet the needs of the
specific circular cylindrical shell panel to be considered in this paper. First of all, this paper
will only consider symmetric laminates: that is, laminates that are symmetric about the
mid-surface with respect to both material properties and geometry (fiber orientation angle,
0., and thickness, 1,). Therefore, the following stiffiness matrices apply :

[Bu] = [Eu] = [Gu] = [Iu] = [O] Qa7

Additionally, since p is constant with respect to = (all laminae have the same density), the
inertia terms in eqn (15) may be integrated to yield :

Iy=ph'[12, 15+ ph*/80, I, = ph’j448,

- | - |
I = k”"‘/'s’ I'n= kph’/60, I, = 17ph*1315, I = 4ph’/315. (18)

The last simplification concerns the acceleration terms in eqn (14). This paper will consider
rotary inertia. In-plane inertia is usually assumed to be small. Consequently, the following
in-plane acceleration terms will drop out: i, = Fy = iy, = fy, =0.

During the development of the kinetic energy. time-dependent boundaries were ignored
because this paper is concerned exclusively with harmonic problems. Assuming harmonic
solution forms and applying separation of variables, the five degrees of freedom and their
corresponding accelerations may be expressed as:

uy = (X, ¥, 1) = up(x, y) sin wr
ty = volX, 1. 1) = vy(x, y) sin it
w=w(x ) =wlxy)sinal, w=—w'w(xy)sinwt = —ww
Y=y oy 0=y (o psinen, o= -0y ())sinor = -0y,
Vo= (x0 0 =Y (xy)sinwt, §, = -, (x,y)sinor = —-w'y, (19)

where w is the natural frequency of vibration.

If these expressions are substituted into Hamilton's principle, bearing in mind that all
the resultant quantities ({N,}. {M}, {S,}. {P.}. (L}, {Q,}. and {R,}) are functions of the
spatial derivatives of w,, to. w, ¢, and ¢,, the term sin wr may be factored out from the
entire expression and integrated with respect to time:
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I: I
sin wt di = — — cos wif:. (20)
3 W '

The integrand may be canceled to the right-hand side of the equation, leaving eqn (13)
independent of time.

The concepts presented in these paragraphs are now incorporated into Hamilton's
Principle. which will be useful in the modified Galerkin method. Equation (13) is partitioned
into five equations. Each contains the equation of motion plus the associated boundary
condition for a particular degree of freedom (Bowlus ez al., 1987 ; Soldatos, 1987 ; Whitney.
1984). Equation (13) for u, yields:

L] l
j j (A"l_‘.+;\f“ ~ R M (,_,> Suydx dy
0 n -

b _ u _ l
+j N,()"m,[f;?d_v-FJ- (Nﬁ— M )()u(,l‘,,, de=0. (21)
0 0 7R

-

Equation (13) for ¢, yiclds:

b
A . S 1 .
J‘ j (I'_'m“lll‘ -l w +N, +N, + IR M,,.‘><)r(, dvdy
1] 1] i

fr
- l . RPN
+J (N,,+ 7R/tl,,>()z-(,]::(‘,'d_;'+f NaSeoliI0de = 0. (22)
Q0 0

Equation (13) tor w yiclds:

h “
J j l—ig(u"(l//‘.\ +. ) —/\‘317(1):(»\",,,. +W ) +I,m2w+Q,.\
o Ju L

—k(l,l.\\ +I’:‘I‘l +2[)(\.\|)+Q2.r+3k(R1,V+R|.,\)

| _ _ _ (1 .
R [ V k(LZ,vv + L(\,.\‘l‘)l + Nl "‘.\\' + ZNOM“.\'V - NZ (R - “‘.,rl‘)] ()“' dx d}'

gl

f ( (Py, +2P, )+ Q. +3kRy + - A(L,.+L6,)

_ _ 1 .
+Naw 4+ NﬁwJ) owirzy d.\'+k{(2]’6 R L(,) On}

Equation (13) for ¢, yiclds:

! .
—k(Pr +2Po )+ Q43R+ kLo + N+ Now, )onn::,’dy

/\

v =0

=0. (23)

vy

ym=b

AN

h o
j J <I-4(1):|//‘-—ij(l):n'_r+k(P|.x+P{....)+A[|_.\«+A’16.r_Ql
0 0
h
—3kR, I‘Q(S,,_‘.+/\'L,,,,)>¢5¢, dx d_1'+j (M, +2kP) oy |528dy
b

[ l . )
+f (M(,+kP,,+ E(-—S,,—kL,,))«)://xl_:.:,‘,’dx =0. (24)
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And, finally, eqn (13) for ¢, yields:

& ta
j f (Lw’«u—iswzw‘_v+k(P:.,.+Po..‘)+M:...+Mo-‘-—Q:
a Jo

h

—3kR, %(szy‘. +kL 2,,,.)) Sy, dx dy+ j (Mo +kPg) oy 1320dy

0

0

The final step in the development of the equations of motion and boundary conditions
is to substitute the resultant quantities to eqn (12) and the strain-displacement relations in
eqns (6) and (7) into eqns (21)-(25). [MACSYMA (1985) is used to perform the extensive
algebraic manipulations.]

Several observations can be made concerning the five resulting equations. For a flat
plate, small deflection theory dictates that bending displacement is completely decoupled
from membrane displacement. If the radius of curvature, R, approaches infinity, the five
circular cylindrical shell panel equations reduce to those of a flat plate. The two membrane
equations for u, and v, will consist only of extensional stiffness terms. 4,. and spatial
derivatives of u, and vy, as expected. Additionally, the three bending equations for w, i,
and ¢, will consist only of bending and higher order stiffness terms and spatial derivatives
of w, ¢,, and ¢,. If the higher order stiffness terms are dropped, leaving only A, and D,
the three flat plate equations will reduce to those of Bowlus er al. (1985, 1987) and Shames
and Dym (1985), which were obtained from the lower order Mindlin transverse shear strain
modeling. For R not cqual to infinity, membrane and bending displacement are coupled.
To find the natural frequencics and buckling loads of the circular cylindrical shell panel,
all five equations must be solved simultancously. This solution will be approximated using
the modified Galerkin technique.

Two types of boundary conditions are considered : simply supported conditions on all
four edges of the panel and clamped supports.

For the panel simply supported on all sides, the following bending boundary conditions
exist

at x=0 and x=u
w=y, =0
and
at y=0 and y=5
w=y¢, =0
As Jones (1975) states, there are four kinds of membrane simply supported boundary

conditions possible. An S-2 type condition is used here such that at an edge of the pancl,
the normal displacement is not zero and the tangential displacement is zero :

at x=0 and x=a
ug#0 and vo=0; ¢ #0
and
at y=0 and y=4
ug=0 and v, #0; ¢, =0.
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Therefore. the admissible functions to be used within the modified Galerkin technique
become:

154 A
Yyouxy) =Y ¥ A4, cos(mrxa)sininmy h)

m=1in=1

v N

yAx.vy= Y ¥ B,,sin(mrxia)cosnny h)
=1 =1
M A%

w(x,3) = Y Y C,,sin(mzx a)sin (nny’h)
e} on= |

N
uyx.yy= 3y ¥ E,, cos(mnxa)sin (nmy'h)

m=tn=1

o
~

¥

telx,v) = Z Z G, sin (mnx/a) cos (nry/h). (26)

m= o=t
The single terms associated with the variations of the degrees of freedom are:

duy — cos (pax/a) sin (gry/h)
duvy - sin (prx/a) cos {gny/b)
Ow — sin (prxfa) sin (yryib)
dtp, — cos{prx/a) sin{gnyih)

MY, = sin(prxja) cos (¢nyib). (27)

Notice the indices in eqn (27) are p and ¢. The single terms that replace the vartations of
the degrees of freedom govern the number of Galerkin equations, Therefore, the number
of terms in each equation is governed by m and », and the number of equations is governed
by pand ¢.

For the panel clamped on all sides, the following bending boundary conditions exist:

at x=0 and x=u
w=if. =, =0

and

It

at y=90 and y=5h

w=1 =, =0

The membrane boundary conditions will be the same as those in the previous section ; from
Jones (1975), a C-2 type boundary condition :
at x=0 and x=u
i, #0 and r, =0
and
at =0 and y=5h
wy, =0 and vy, £0.

The admissible functions become :



Vibration and buckling of composite cylindrical panels 353

L2 N
yo(x.y) = Z Z A, sin (mnx/a)sin (nmy/b)
m=4{n=1

A7) N
(X y) = Z Z B,., sin (mnxja) sin (nmy/b)
m=1|n=1
M N
w(x.y) = Z Z C,,., sin (mnx/a) sin (nmy/b)
m=1n=1
M N
up(x.y) = Y. Y E,,cos(mnx/a)sin (nmy/b)
m={n=1
M hi

ry(x.y) = Z Z G... Sin (mnx/a) cos (nmy/b). (28)

m=1n=1

The single terms associated with the variations of the degrees of freedom are:

Oy, — sin (prx/a) sin (gry/b)
Oty — sin{pnx/a) sin (qny/b)
dw — sin (prx/a) sin (gny/b)
0 — cos (prx/a) sin (qry/b)
S, — sin (prx/a) cos (¢my/b). (29)

And, as in the simply supported case, the indices for the single terms are p and ¢ mand n
govern the number of terms per equation, and p and ¢ govern the number of equations.

RESULTS AND DISCUSSION

Several analytical studies were performed. First, a case comparison study with the
modified Donnell cylindrical shell panel solutions was carried out. The effects of transverse
shear deformation, radius of curvature variation, and rotary inertia were investigated.
Finally, the influence of varying the length to span ratio was studied.

Laminated circudar cvlindrical shell panel propertics
The cylindrical shell panel studied in this paper is constructed of graphite-epoxy
material and has the following material properties:

E, =210 E+07 psi
E, = 1.40 E +06 psi
G, =600 E+05psi: Gy, =Gs,y = 0.8G,,
vy, =03
p = 142454 E—04 slugsin "' (0.551bin"%).

Two ply lay-ups were investigated : [04,/905], and [+454/+455], (both of which for
convenience will be referred to as [0/90], and [ £45],). The latter ply lay-up will introduce
more shear stiffness terms into the formulation. The above material properties will be used
in all the analyses except for the Donncll comparison investigation.

All pancel configurations uscd in this study displayed excellent frequency and buckling
load convergence towards exact answers. This does not prove convergence, but it definitely
demonstrates convergence tendencies. The drawback with the Galerkin technique is that in
order to obtain extremely accurate answers that require M and N be greater than 10, a
great deal of computer resources is required. This higher accuracy requirement has more
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application with the buckling loads. since they do not converge as fast as the natural
frequencies.

Comparison study with Donnell solution

Reddy and Liu (1985) examined laminated circular cylindrical shell panels using
Donnell theory assumptions with parabolic transverse shear modeling. The equations of
motion for the circular cylindrical shell panel, eqn (14). will degenerate down to the Donnell
equations of motion by dropping the appropriate higher order terms in eqn (16). Reddy
found an exact solution to the equations of motion for simply supported boundary con-
ditions using Navier's method. The Navier solution exists only if the following stitfnesses
are equal to zero: Ado=Dy=Fo=H, =0 (i=1.2) and A;s=D,. = F,- =0. This
restricts his analysis to panels with {0/90], ply lay-ups.

Reddy used different engineering constants in his work than those used in this paper.
The following values were used in the comparison:

E,=21E+07psi
E,=84E+05psi
G,:=42E+0Spsi

Gi=Gyp
Via = 025

p = 10slugs in " (notc an extremely large value).

Table 1 compares Reddy's answers using the Navier solution with those of this paper using
the Galerkin technigue. Note that Donnell theory linits the maximum A, R ratio to be about
1/50. Table 1 validates the accuracy of the higher order theory as it applies to Donnell-
type problems. The excellent agreement between the higher order theory and the Donnell
cquations is attributed to the fif R region involved. As explained carlier, since the maximum
h!R value is 1/50, the higher order terms in eqn (I8) approach zero: the higher order
cquations of motion reduce to Reddy’s Donnell equations.

Radius of curvature analysis

The cffects of varying the radius of curvature, R (or, equivalently, £/ R}, is examined
in this section. As noted previously, tor a flat plate /R = 0. and a membrane completely
decouples from bending. The membrane Galerkin equations, those associated with u, and
ry. are coupled together, but as a whole are decoupled from the bending Galerkin equations:
those associated with w, ., and . As /R is increased from 0 up to the maximum value
of 175, membrane and bending couple together, the eylindrical panel becomes deeper and

Tuble 1. Donnell frequency comparison fundamental frequeney (rad s ')

R (in} hR Navier Galerkin Frror {"a}
a«=h=1000in
500.0 0.002 1.86602 1.8697 +0.2
1000.0 0.001 1.52416 1.52458 +0.03
2000.0 0.0005 1.42519 1.42529 +0.007
5000.0 0.0002 1.39585 1.39623 +0.03
a=h=10.01n
50.0 0.02 108.4237 108.6415 +0.2
100.0 0.01 108.0571 108.109 +0.05
200.0 0.005 107.9655 107.9753 +0.009
500.0 0.002 107.9655 107.9379 -0.03

Simply supported boundary condition. [0:90}.. & = 1.0in.
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Fig. 3. Curvature effects on frequency. Simply supported boundary, [0/90],.

stiffer, and the natural frequencies and buckling loads increase. The following specific A/R
ratios are investigated :

0: Flat Plate
h 1/50: Donncll Equation Maximum Limit
R 1/20: Intermediate Value
1/5: Maximum Limit of Higher Order Theory.

The figures, subsequently shown, are plots of w or N, vs b/h. The pancls have equal
length and circumferential dimension; a/b =1, and M = N = 6 is used as the degree of
accuracy. (The two buckling load plots for /R = 1/5 required M = N = 8 for b/h values
of 5,10, and 15and M = N = 10 for h/h values of 20 and 30 to obtain proper convergence.)
The circumferential length to thickness ratio (b/h) is varied from 5.0 to 50.0.

The four fundamental frequency plots are shown in Figs 3-6. All curves follow the
same basic trends: the frequencies are high at b/4# = 5.0 and then decrease as the panel
gets thinner, approaching constant values asymptotically at /A values of 40-50. Also, as

50.0
45.0
40.0
35.0
30.0
25.0
20.0
15.0

®/1000.0 {rad/sec)

10.9
5.0

9.0 ¢ T Y
0 20 40 114
b/h
Fig. 4. Curvature effects on frequency. Simply supported boundary, [ +45),.

$AS 28:3-C
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Fig. 5. Curvature effects on frequency. Clamped boundary, [0,90],

expected, the frequencies increase due to membrane and bending coupling as 4/ R is increased
from 0 to 1/5. The effect of this coupling is shown in Table 2 in which panel to flat plate
frequency comparisons are made.

With few exceptions, the [ +45], laminates generally yield higher frequencies than the
[0/90], laminates for both boundary conditions considered. The [ +45], laminates have in-
plane shear stiffness terms (D, Dyg, Fion Froo Hyoo Hago J16. J36) that account for these
higher frequencies. Referring to Figs 3 and 4, for the simply supported boundary condition,
the difference in frequency for the two laminates becomes greater as the curvature increases.
For /R = 0, the frequencies are about 20% higher for the {£45], laminate for all b/A
values. For A/R = 1/50, the frequencies are about 20% higher at A/h = 5 and are about
50% higher at b/h = 50. For h/R = 1/20, the frequencies vary from 20% higher to 80%
higher, and for A/ R = 1/5 the frequencies are about 25% higher for all 8/A valuces.

For the clamped boundary condition, the [0/90], luminate yields higher frequencies
than the [£45], laminate for flat plates (#/R = 0). But, as the curvature increases, the
frequencices of the [+45], laminate become greater than those of the [0/90], laminate (sce
Figs 5 and 6). For h/R = 150, the frequencies for both luminates arc roughly equal at
bih = S, but the frequencies are about 30% higher for the [ +45], laminate at b/h = 50. For

50.0

45.0

40.0 & WA
. : o WRsYSO
3 35.0 A WRa120
1’ ¢ RS
O 30.0
E 3

25.0
o
S 200
b=
5 15.0

10.0

5.0

0.0 4+ y —r

0 20 40 60

b/h

Fig. 6. Curvature effects on frequency. Clamped boundary, [ £45].
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Table 2. Frequency coupling effects

wi ('lp
[0-90}, [+45],

h R bh=10 bh=230 hh=10 bhh=30
Simply supported boundary conditions

15 1.54 4.52 2.02 4.37

1.20 1.04 2.65 .14 248
Clamped boundary conditions

15 1.27 267 I.78 337

120 1.02 1.54 L.10 205

o, = flat plate natural frequency A= [0iniab = L.

h/ R = 1720, the frequencies vary from roughly 6% higher to 20% higher. and for h/r = 1/5
the frequencies are roughly 30% higher.

Table 2 displays a consistent trend mentioned in the previous two paragraphs; in
general, as the curvature of the panel increases, the membrane and bending coupling has a
greater effect at larger A/h values. Larger b/t values physically equate to greater arc length
around the panel. In fact, for /R = /5 at b/h = 30 the cylindrical panel is almost a
complete cylinder.

For the same ply lay-up. the frequencies for the clamped boundary condition are higher
than those for the simply supported boundary condition. For the [0/90], laminate the
difference is quite dramatic. For A/R values of 0 and /50, the frequencies are 20% higher
atbh/h = Sand over 100% higher at b/h = 40-50. For i/ R = 1/20 the frequencies are roughly
30% higher for all A/h values, and for i/ R = 1/5 the frequencies are roughly 20% higher.
Figurcs 4 and 6 show the same trend for the [+45], laminate. The same trends of the
frequency plots are evident ; high buckling loads at small /A values, decreasing asymptot-
ically to constant loads at d/h values of 40 -50. There are very significant increases in the
buckling loads as A/R is increased. and as Table 3 shows, the membrane and bending
coupling has a greater effect as the circumferential distance around the panel increases.

The [+45], laminate yields higher buckling loads for the clamped boundary condition
than for the simply supported boundary condition for A/ R values of 0, 1/50, and 1/20. (See
Figs 7 and 8.) The buckling loads are roughly the same for both boundary conditions for
h/R = 1/5. Similarly, as Table 4 indicates, the [0/90], laminate yields buckling loads for the
clamped boundary condition that are upwards of 50% higher than the buckling loads for
the simply supported boundury condition, as would be expected.

450.0
400.0
& hRz0
350.0 w Ratse
= A hR2120
§ 300.0 ¢ NRaYS
o 250.0
[ ~4
8 000
=
{= 150.0
100.0
50.0
0.0 3 ——y e, NN
(1] 20 40 60

b/h
Fig. 7. Curvature effects on buckling. Simply supported boundary. [ +45]..



358 A, N PaLazotto and P E. LINNEMANN
450.0
400.0
350.0
300.0
250.0
200.0

150.0

N1/1000.0 (Iblin)

100.0

50.0

caeabaasabacoabeaaa ity gaad s aaliaag sl

0.0 T v T 1

o
~
o
-~
(=]
-]
(—]

b/h

Fig. 8. Curvature effects on buckling load. Clamped boundary, [ +45]..

Rotary inertia analysis

Another feature of this paper is the incorporation of rotary inertia into the vibration
problem. Rcferrlng to eqns (14), the following accelerations contribute to the rotary inertia
W W WL I rotary inertia s eliminated, the only inertia term left
15 I3 on the right-hand side of the equation of motion for win eqn (14). Likewise, the
Galerkin equations all reduce to a single term on the right-hand sides. The end result is a
much less populated mass/inertta matrix,

Bowlus (1987) and Palardy and Palazotto (1990) both found rotary inertia to be
negligible for the vibration of flat plates modcled with Mindlin transverse shear theory. The
results arce the same for this paper. Several cases were run for both simply supported and
clamped boundary conditions, which included various A/ R ratios, ranging from 0 (flat plate)
to 1/5, and various a/fi (b/h) ratios. The results were all the same. With rotary inertia
removed, the fundamental frequencies are only about 0.5% higher. The overall conclusion
is that rotary inertia has a negligible effect for first mode analysis. It does become more
important for the higher modes, however.

W

A

Transverse normal stress considerations

The transverse normal stress, o., was set equal to zero under the assumptions of plane
stress constitutive relations. This is a good assumption for most geometries, and is therefore
used quite extensively in plate/panel analyses. Some of the geometries analyzed in the
previous sections “stretech™ the accuracy limitations of the o, assumption and warrant
specific comments. First, the flat plate is examined.

For flat plates, the validity of assuming o. = 0 is dependent upon the minimum value
of ajh (or hih) chosen. Koiter (1960) states that the transverse normal stress is in general
of order /1*/L? times the bending stress, and transverse shear strain is /L times the bending

Table 3. Buckling load coupling efTects

N',/S‘,’
Simply supported Clamped
hiR bih =10 bih = 30 b/l =10 bhh =30
1’5 1.63 9.35 1.43 5.6l
120 1.08 345 1.06 222

N, = flat plate buckling load : h = L0 in: a:h = 11 [£45],.
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Table 3. Buckling loads for [0/90], laminates

Critical buckling load {lbin~ ")

bh Simply supported Clamped

5 3922813 454819.2
20 104118.3 195617.0
50 94020.0 1347236

R=200in:hA=10in;a/b=1.

stress. where L is the smallest wavelength of the deformation patiern on the mid-surface.
For plates, L is almost always equal to the smallest dimension (a or b). Therefore, for the
plate:

hd
6.~ hla*(o,.0,)

T T, X hja(o,.0,). 30)

A rule of thumb in classical plate theories is the minimum a/h ratio 10, or 6. = 0.0l(6,.7,).
Referring to the previous sections, the minimum a/h (h/h) ratio used is 5; a. is roughly 4%
of (#,.7,) and 20% of (z,.. t,.). and therefore becomes important for these very thick plate
configurations,

Shells incorporate the o, approximations with respect to the flat plate. plus an additional
accuracy consideration, As Koiter (1960) states, the transverse normal stress is of order
R/ R times the bending stress. For the shell panel:

a.x hfRis,.0,)

.1, X e, 6,). 3n
When combined together, these equations give:

a.x LIR(t .. 1,.). (32)

By the mere fuct that the muximum A/ R ratio used in this paper is 1/5, 6. becomes important
because it is in reality roughly 20% of the bending stresses. For the smaller #/R ratios used,
the a_effect is negligible, except for the regions of small afh, as explained above,

Using eqn {32), 6. may be further examined for the #/R ratio of 1/5. L is not always
equal to the dimension of the shell panel; it varies with b/h, and is determined from the
mode shape. The longitudinal mode shape generally behaves like that of a flat plate : usually
one full sine wave or one half sine wave. The circumferential mode shape varies, depending
on the geometry and on the problem (buckling or vibration).

The panel generally buckles into six sine waves in the circumferential direction;
L = b/6 and L/R = b/30 for h/R = 1/5. From eqn (32), g, is roughly 15% of (z,.,1,.) at
bjh = 5, where the transverse shear is very prominent. o, = (1. 7,.) at b/h = 30, but the
transverse shear here is very low; so, the effect is negligible.

For the vibration problem involving 2/ R = 1/5, there is, in general, only 1-1.5 full sine
waves in the circumferential direction; at L/R = 2b/15, o, becomes important at bfh = §
because it is roughly 66% of the transverse shear in a region where the shear is very
prominent.

The overall conclusion is that o, is important for &/ R values of 1/5 and a/h (b/h) values
of 5, especially for the vibration problem. The overall trends displayed by the data,
however, are accurate.

Whitncy (1987) presents a method that includes o, effects and would improve the
accuracy for these particular geometrics. In his model, the transverse displacement wis a
linear function of = and has the form: w(x, y.2) = wa{x. ¥} + z¢{x. ¥). where wy(x. v} is the
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mid-surface transverse displacement. and ¢(x.y) is an additional degree of freedom that
must be included in the constitutive relations and equations of motion.

CONCLUSIONS

A theory applicable to symmetrically laminated anisotropic circular cylindrical shell
panels of arbitrary geometries has been developed. The theory includes a through the
thickness parabolic transverse shear stress and strain distribution and is valid for
0 < AR < 1 5. Analytical solutions for the fundamental frequencies. critical buckling loads
and the corresponding mode shapes are obtained using the modified Galerkin technique.
Simply supported and clamped boundary conditions were investigated. Based upon the
analysis, the following conclusions are presented.

The strain-displacement relations are very accurate for 0 < 4'R < 1 10. The results
were verified against the Donnell solutions for 0 </t R < 1.50. Since there is no 'R
variation in the transverse shear strains. and since o, and «. are assumed equal to zero, some
precision is lost for /R values of 1'S. However. the generated results show very logical and
consistent trends at this /i/ R limt, and consequently the theory here is assumed to be a very
good approximation.

The modified Galerkin technique proved to be an excellent method for solving the five
coupled partial differential equations of motion and boundary conditions. The method
converged to exact frequencies very quickly for all geometrics, Convergence was stower for
the buckling problem. particularly for the clamped boundary condition at #/R = 1/5 and
high b/h ratios. The method still works for these cases, but at the cost of a great deal of
computer time.

Increasing A/ R from 0 to 1’5 increased membeane and bending coupling, and drove
the frequencies and buckling loads to higher values for both boundary conditions. For
both boundary conditions, the [ +45], laminates yielded higher frequencies than the [0/90),
laminates, due to the additional in-plane and transverse shear terms in the former. Both
[+£45], and [0.90], laminates yiclded higher frequencies for clumped boundary conditions
than for simply supported boundary conditions,

Buckling loads behaved differently. The [ £ 45], laminates yielded higher buckiing loads
than the [0,90], laminate for simply supported bounditry conditions, but [0/90], buckling
loads are higher than [ +45], buckling loads for clamped boundary conditions. The [+45],
laminates have stightly higher buckling loads for clamped versus simply supported boundary
conditions, except at i/ R = 15 where the buckling loads for both boundary conditions are
roughly equal. Finally, [0/90] laminates have much higher buckling loads for clamped
boundary conditions than simply supported boundary conditions.

Rotary inertia ¢ffects were negligible for all panel configurations examined. Fun-
damental frequencies were only about 0.5% higher with rotary inertia removed.
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